EXERCISES [MAI 5.4]

MONOTONY - MAX - MIN

SOLUTIONS

Compiled by: Christos Nikolaidis

A. Paper 1 questions (SHORT)

1. (a) $f^{\prime}(x)=3 x^{2}+1>0, f$ increasing
(b) $f^{\prime}(x)=-1-3 x^{2} \leq 0, f$ decreasing
(c) $f^{\prime}(x)=10 x^{4}+\frac{1}{2 \sqrt{x}}>0, f$ increasing
(d) $f^{\prime}(x)=x-2>0, f$ increasing
2. (a) $f^{\prime}(x)=3 x^{2}+6 x-9$
(b) $3 x^{2}+6 x-9=0 \Leftrightarrow x=-3(\max) x=1$ (min)
(c) check the graph on your GDC
3. (a) $f^{\prime}(x)=3 x^{2}+6 x+3$
(b) $3 x^{2}+6 x+3=0 \Leftrightarrow x=-1$ (neither max nor min) [called stationary point of inflexion]
(c) check the graph on your GDC
4. (a) $f^{\prime}(x)=3 x^{2}-6 x+3$
(b)

x	-1	0	1	2	3
$f(x)$	-7	0	1	2	9
$f^{\prime}(x)$	12	$\mathbf{3}$	0	$\mathbf{3}$	12

(c)

(d) 12
5. (a) $g^{\prime}(x)=2 p x+q$
(b) $2 p x+q=2 x+6$, so $p=1, q=6$
(c) (i) $g^{\prime}(x)=0 \Rightarrow 2 x+6=0 \Rightarrow x=-3$
(ii) $-12=(-3)^{2}+6(-3)+c \Rightarrow-12=9-18+c \Rightarrow c=-3$
6. (a) $\mathrm{g}^{\prime}(x)=3 x^{2}+12 x+12$
(b) $3 x^{2}+12 x+12=0$
$x^{2}+4 x+4=0$
$x=-2$
(c)
(i) $x=-3 \Rightarrow \frac{\mathrm{~d} y}{\mathrm{~d} x}=3$
(ii) $x=0 \Rightarrow \frac{\mathrm{~d} y}{\mathrm{~d} x}=12$
(iii) (a) Increasing (b) Increasing
7. $x=1$ (max) $x=3$ (min)
8. $\quad x=1(\max) x=3(\min) x=5$ (neither - stationary point of inflexion)
9. (a) $g^{\prime}(x)=3 x^{2}-6 x-9$
$3 x^{2}-6 x-9=0 \Leftrightarrow 3(x-3)(x+1)=0 \Leftrightarrow x=3 x=-1$
(b) METHOD 1
$g^{\prime}(x<-1)$ is positive, $g^{\prime}(x>-1)$ is negative $\Rightarrow \max$ when $x=-1$
$g^{\prime}(x<3)$ is negative, $g^{\prime}(x>3)$ is positive $\Rightarrow \min$ when $x=3$,
METHOD 2
Evidence of using second derivative
$g^{\prime \prime}(x)=6 x-6 \Rightarrow \max$ when $x=-1$
10. (a)

	A	B	C	E
$f^{\prime}(x)$	negative	0	positive	negative

(b)

$f(0)$	$f^{\prime}(0)$
positive	positive

11.

12. (a) $x=1$

The gradient of $g(x)$ goes from positive to negative
(b) $-3<x<-2$ and $1<x<3$ $g^{\prime}(x)$ is negative
(c)

13.

	$f(x)$	$f^{\prime}(x)$
$x=-3$	negative	0
$x=-2$	negative	positive
$x=-1$	0	positive
$x=0$	positive	0
$x=0.5$	positive	negative
$x=2$	negative	0

14. (a) $f^{\prime}(x)=2 x-\frac{p}{x^{2}}$
(b) $f^{\prime}(-2)=0 \Leftrightarrow-4-\frac{p}{4}=0 \Leftrightarrow-\frac{p}{4}=4 \Leftrightarrow p=-16$
15. (a)

x	$x<0$	$x=0$	$0<x<4$	$x=4$	$x>4$
$f^{\prime}(x)$	positive	0	negative	0	positive

(b)

16.

Function	Derivative diagram
f_{1}	(d)
f_{2}	(e)
f_{3}	(b)
f_{4}	(a)

B. Paper 2 questions (LONG)

17. (a) (i) $f^{\prime}(x)=6 x^{2}-6 x-12(+0)=6 x^{2}-6 x-12$
(ii) $f^{\prime}(3)=6(3)^{2}-6(3)-12=24$
(b) $6 x^{2}-6 x-12=-12 \Rightarrow 6 x^{2}-6 x=0 \Rightarrow 6 x(x-1)=0 \Rightarrow x=0$ or $x=1$
(c) (i) $f^{\prime}(x)=0 \Rightarrow 6 x^{2}-6 x-12=0 \Rightarrow x^{2}-x-2=0 \Rightarrow x=2$ or $x=-1$
(ii) $x=2, y=-15$

Therefore, minimum is $(2,-15)$
(d) $x<-1$ and $x>2$
18. (a) $f^{\prime}(x)=3 x^{2}+12 x-15$
(b) $f^{\prime}(x)=0 \Leftrightarrow x=-5, x=1$
(c) maximum $\mathrm{M}(-5,100)$, minimum $\mathrm{M}^{\prime}(1,-8) \Rightarrow$ Midpoint $(-2,46)$
$f(-2)=46$
(d) $f^{\prime}(-2)=-27$
$y-46=-27(x+2) \Rightarrow y=-27 x-8$
19. (a) $f^{\prime}(x)=3 a x^{2}+2 b x+9$
(b) $f(1)=4 \Rightarrow a+b+9=4 \Rightarrow a+b=-5$
$f^{\prime}(1)=0 \Rightarrow 3 a+2 b+9=0 \Rightarrow 3 a+2 b=-9$
(c) $a=1, b=-6$
(d) $f(x)=x^{3}-6 x^{2}+9 x$
$f^{\prime}(x)=3 x^{2}-12 x+9=0 \Rightarrow x=1, x=3$

x	3	
$f^{\prime}(x)$	-	+
	\min	

20. (a) $f^{\prime}(x)=3 x^{2}-4$
(b) $f^{\prime}(1)=-1$
$3 x^{2}-4=-1 \Leftrightarrow x= \pm 1$
at $\mathrm{Q}, x=-1, y=4(\mathrm{Q}$ is $(-1,4))$
(c) $\quad f$ is decreasing when $f^{\prime}(x)<0$
$p=-1.15, q=1.15 ;\left(\mathrm{OR} \pm \frac{2}{\sqrt{3}}\right)$
(d) $f^{\prime}(x) \geq-4, y \geq-4$, OR $[-4, \infty[$
