EXERCISES [MAI 5.4] MONOTONY – MAX – MIN SOLUTIONS

Compiled by: Christos Nikolaidis

A. Paper 1 questions (SHORT)

1. (a) $f'(x) = 3x^2 + 1 > 0$, f increasing (b) $f'(x) = -1 - 3x^2 \le 0$, f decreasing

(c)
$$f'(x) = 10x^4 + \frac{1}{2\sqrt{x}} > 0$$
, f increasing (d) $f'(x) = x - 2 > 0$, f increasing

- 2. (a) $f'(x) = 3x^2 + 6x 9$ (b) $3x^2 + 6x - 9 = 0 \Leftrightarrow x = -3 \pmod{x} = 1 \pmod{x}$ (c) check the graph on your GDC
- 3. (a) $f'(x) = 3x^2 + 6x + 3$
 - (b) $3x^2 + 6x + 3 = 0 \Leftrightarrow x = -1$ (neither max nor min) [called stationary point of inflexion] (c) check the graph on your GDC

4. (a)
$$f'(x) = 3x^2 - 6x + 3$$

(b)

x	-1	0	1	2	3
f(x)	-7	0	1	2	9
f'(x)	12	3	0	3	12

(c)

(d) 12

5. (a)
$$g'(x) = 2px + q$$

(b) $2px + q = 2x + 6$, so $p = 1$, $q = 6$
(c) (i) $g'(x) = 0 \Rightarrow 2x + 6 = 0 \Rightarrow x = -3$
(ii) $-12 = (-3)^2 + 6(-3) + c \Rightarrow -12 = 9 - 18 + c \Rightarrow c = -3$
6. (a) $g'(x) = 3x^2 + 12x + 12$
(b) $3x^2 + 12x + 12 = 0$
 $x^2 + 4x + 4 = 0$
 $x = -2$
(c) (i) $x = -3 \Rightarrow \frac{dy}{dx} = 3$ (ii) $x = 0 \Rightarrow \frac{dy}{dx} = 12$
(iii) (a) Increasing (b) Increasing
7. $x = 1$ (max) $x = 3$ (min)
8. $x = 1$ (max) $x = 3$ (min) $x = 5$ (neither - stationary point of inflexion)
9. (a) $g'(x) = 3x^2 - 6x - 9$
 $3x^2 - 6x - 9 = 0 \Leftrightarrow 3(x - 3)(x + 1) = 0 \Leftrightarrow x = 3 x = -1$
(b) **METHOD 1**
 $g'(x < -1)$ is positive, $g'(x > -1)$ is negative \Rightarrow max when $x = -1$

= -1 g'(x < 3) is negative, g'(x > 3) is positive \Rightarrow min when x = 3,

METHOD 2

Evidence of using second derivative $g''(x) = 6x - 6 \Rightarrow \max \text{ when } x = -1$ g''(3) = 12 (or positive),

-		А	В	С	Е
	f'(x)	negative	0	positive	negative

(b)

f(0)	f'(0)	
positive	positive	

11.

12. (a) x = 1The gradient of g(x) goes from positive to negative

(b) -3 < x < -2 and 1 < x < 3g'(x) is negative

13.

	f(x)	f'(x)
x = -3	negative	0
x = -2	negative	positive
x = -1	0	positive
x = 0	positive	0
x = 0.5	positive	negative
<i>x</i> = 2	negative	0

14. (a)
$$f'(x) = 2x - \frac{p}{x^2}$$

(b) $f'(-2) = 0 \Leftrightarrow -4 - \frac{p}{4} = 0 \Leftrightarrow -\frac{p}{4} = 4 \Leftrightarrow p = -16$

15. (a)

X	x < 0	x = 0	0 < x < 4	x = 4	x > 4
f'(x)	positive	0	negative	0	positive

(b)

16.

Function	Derivative diagram
f_1	(d)
f_2	(e)
f_3	(b)
f_4	(a)

17. (a) (i)
$$f'(x) = 6x^2 - 6x - 12 (+0) = 6x^2 - 6x - 12$$

(ii) $f'(3) = 6(3)^2 - 6(3) - 12 = 24$
(b) $6x^2 - 6x - 12 = -12 \Rightarrow 6x^2 - 6x = 0 \Rightarrow 6x (x - 1) = 0 \Rightarrow x = 0 \text{ or } x = 1$
(c) (i) $f'(x) = 0 \Rightarrow 6x^2 - 6x - 12 = 0 \Rightarrow x^2 - x - 2 = 0 \Rightarrow x = 2 \text{ or } x = -1$
(ii) $x = 2, y = -15$
Therefore, minimum is $(2, -15)$
(d) $x < -1$ and $x > 2$
18. (a) $f'(x) = 3x^2 + 12x - 15$
(b) $f'(x) = 0 \Rightarrow x = -5, x = 1$
(c) maximum M(-5,100), minimum M'(1,-8) \Rightarrow Midpoint (-2,46)
 $f(-2) = 46$
(d) $f'(-2) = -27$
 $y - 46 = -27(x + 2) \Rightarrow y = -27x - 8$
19. (a) $f'(x) = 3ax^2 + 2bx + 9$
(b) $f(1) = 4 \Rightarrow a + b + 9 = 4 \Rightarrow a + b = -5$
 $f'(1) = 0 \Rightarrow 3a + 2b + 9 = 0 \Rightarrow 3a + 2b = -9$
(c) $a = 1, b = -6$
(d) $f(x) = x^3 - 6x^2 + 9x$
 $f'(x) = 3x^2 - 12x + 9 = 0 \Rightarrow x = 1, x = 3$
20. (a) $f(x) = 3x^2 - 4$
(b) $f(1) = -1$
 $3x^2 - 4 = -1 \Leftrightarrow x = \pm 1$
 $at Q, x = -1, y = 4 (Q \text{ is } (-1, 4))$
(c) $f \text{ is decreasing when $f'(x) < 0$
 $p = -1.15, q = 1.15; (OR $\pm \frac{2}{\sqrt{3}})$
(d) $f'(x) \ge -4, y \ge -4, OR [-4, \infty[$$$